
Secure Token Development and
Deployment

Dmitry Khovratovich and Mikhail Vladimirov,

University of Luxembourg and ABDK Consulting

ERC-20 tokens and ICO

• ERC-20 standard: developed in late 2015, de-facto standard for fungible assets.

• Many enterprises decided to raise funds via Initial Coin Offering (ICO):

• Users deposit money to a dedicated web-service or Ether to a bookbuilding contract;

• The total investment is converted to a fixed number of tokens;

• A smart contract is issued, where each user gets tokens according to his investment share.

• In 2016, 64 ICOs gathered over $103 mln. (CoinDesk)

ERC-20 functions

Function Description

totalSupply() Total number of tokens in circulation

balanceOf(A) Number of tokens belonging to A

transfer(A,x) Send x tokens to A

transferFrom(A,x) Withdraw x tokens from A

approve(A,x) Approve A to withdraw tokens from me

allowance(A,B) How much B can withdraw from A

Security
• Security of the ICO process and contract

maintenance is a vital issue.

• Threats:
• Token loss due to contract misbehavior;

• Availability loss: external contracts (say,
exchanges) can not interact with the token
contract due to its errors.

• Vulnerabilities:
• Insecure code;

• Error-prone interface.

ERC-20 functions
• transfer(address _to, uint256 _value) returns (bool success) –

• Send _value amount of tokens to address _to

• balanceOf (address _owner) constant returns (uint256 balance) –
• number of tokens belonging to address

• totalSupply() constant returns (uint256 totalSupply) –
• total number of tokens

• approve(address _spender, uint256 _value) returns (bool success)
–

• approve the spender to withdraw tokens from my account, multiple times;

• allowance(address _owner, address _spender) constant returns
(uint256 remaining)

• how much the spender can withdraw

• transferFrom(address _from, address _to, uint256 _value)
returns (bool success) – transfer tokens from t

Current Insecurity: Implementations

Exceptions in Solidity

• C1.F() can not catch exceptions;

• C1.call() can not get returned values.

• Exceptions must be for exceptional events!

function F(uint x)
returns uint{

If(x>42) throw;
else return 3}

X=C1.F(10);
….

X = C1.call(…”F”…)

C2 C1

Exceptions instead of value return

Code example:
function transferFrom(address _from, address _to, uint _value) returns (bool
success) {
 var _allowance = allowed[_from][msg.sender];

 balances[_to] = safeAdd(balances[_to], _value);
 balances[_from] = safeSub(balances[_from], _value); 1
 allowed[_from][msg.sender] = safeSub(_allowance, _value);
 Transfer(_from, _to, _value);
 return true;
 }

function safeSub(uint a, uint b) internal returns (uint) {
 assert(b <= a);
 return a - b;
 }

Exceptions instead of value return

Code example:
function transferFrom(address _from, address _to, uint _value)
returns (bool success) {
 var _allowance = allowed[_from][msg.sender];

 balances[_to] = safeAdd(balances[_to], _value);
 balances[_from] = safeSub(balances[_from], _value);
 allowed[_from][msg.sender] = safeSub(_allowance, _value);
 Transfer(_from, _to, _value);
 return true;
 }

• If the _from balance is insufficient, or allowance is too low, exception is
thrown (must return false by the standard).

Relying on future exceptions
• function transferFrom(address _from, address _to, uint _value)

returns (bool success) {
 var _allowance = allowed[_from][msg.sender];
 balances[_to] = safeAdd(balances[_to], _value);
 balances[_from] = safeSub(balances[_from], _value);
 allowed[_from][msg.sender] = safeSub(_allowance, _value);
 Transfer(_from, _to, _value);
 return true;
 }

• The _to balance is always increased.

• In order to revert the operation, the allowance decrease MUST throw
exception.

Overflows in SafeMath
• function safeMul(uint a, uint b) internal returns

 (uint) {
 uint c = a * b;
 assert(a == 0 || c / a == b);
 return c;
 }

• Code relies on the (undocumented) behavior of overflow in Solidity.

• First creates overflow, then tries to detect it.

• The overflow might be treated differently in the future, so potential
compatibility loss.

• Same with safeAdd.

Current Insecurity: the Approve() function
Attack on the ERC-20 standard

Approve

• approve(address _spender, uint256 _value)

 _spender can withdraw from your account up to _value tokens.

• Subsequent approve() overrides the previous one.

• transferFrom(address _from, address _to, uint256 _value)

spender withdraws _value tokens from _from and sends them to _to.

• transferFrom logs a Transfer event where the spender is not listed(!).

Attack
1. Alice approves Bob with N tokens;

2. Alice decides to change Bob’s allowance and approves him with M
tokens;

3. Bob notices the last transaction before it is mined and withdraws N
tokens from Alice sending them to Carol.

4. After Alice’s transaction is mined, Bob withdraws M more tokens from
Alice sending them to Carol, thus taking M+N in total.

• Bob’s actions are not properly logged: the Transfer event gives the
addresses of Alice and Carol, not Bob.

• Even more confusion if Carol has allowance from Alice as well.

Our suggestion: atomic approval and new
events

1) function approve(address _spender, uint256
_currentValue, uint256 _value) returns (bool success)

If current allowance for _spender is equal to _currentValue, then overwrite it with
_value and return true, otherwise return false.

2) event Transfer(address indexed _spender, address
indexed _from, address indexed _to, uint256 _value)

3) event Approval(address indexed _owner, address
indexed _spender, uint256 _oldValue, uint256 _value)

Our approach

Clear requirements and behavior

• Define functional requirements for the token contract and API;

• Describe all use cases;

• State security claims explicitly.

Detailed use cases

Elaborate tests

Full compliance to ERC-20 and predictable
behavior

function transferFrom (address _from, address _to, uint256 _value)

 returns (bool success) {

 if (allowances [_from][msg.sender] < _value) return false;

 if (accounts [_from] < _value) return false;

 allowances [_from][msg.sender] =

safeSub (allowances [_from][msg.sender], _value);

 if (_value > 0 && _from != _to) {

 accounts [_from] = safeSub (accounts [_from], _value);

 accounts [_to] = safeAdd (accounts [_to], _value);

 Transfer (_from, _to, _value);

 }

 return true;

 }

Deployment and Administration:
Dedicated UI

UI for smart contract interaction

Smooth user experience is crucial for security

• Runs in browser, Mist is not necessary;

• Connects to local or remote node;

• Accounts and/or passwords synced across devices;

• Plugin support to create administrator consoles.

Example: Smart Token Wallet

• Connects to a remote node (Amazon EC2);

• Static file, works in any browser/OS locally.

• For users:
• Balance and exchange rates for tokens alone and combined;

• Approve and allowance functionality;

• For token administrators:
• Fool-proof token resupply;

• Freezing transfers;

• Multisig administration.

Secure code, smart UI?

www.abdk.consulting

