Secure Token Development and
Deployment

Dmitry Khovratovich and Mikhail Vladimirov,

University of Luxembourg and ABDK Consulting

ERC-20tokens and ICO

® ERC-20 standard: developed in late 2015, de-facto standard for fungible assets.

® Many enterprises decided to raise funds via Initial Coin Offering (1CO):
® Users deposit money to a dedicated web-service or Ether to a bookbuilding contract;
® The total investment is converted to a fixed number of tokens;

® Asmart contract is issued, where each user gets tokens according to his investment share.

® In 2016, 64 ICOs gathered over $103 min. (CoinDesk)

- iICONOMI

R

Investors

\ Smart Contract

Token Issuer

ERC-20 functions

totalSupply()
balanceOf(A)
transfer(A,x)
transferFrom(A,x)
approve(A,x)

allowance(A,B)

Total number of tokens in circulation
Number of tokens belonging to A

Send x tokens to A

Withdraw x tokens from A

Approve A to withdraw tokens from me

How much B can withdraw from A

Security

® Security of the ICO process and contract
maintenance is a vital issue.

® Threats:

® Token loss due to contract misbehavior;

DAO HACK

A A A

® Availability loss: external contracts (say, EMERGENCY
exchanges) can not interact with the token
contract due to its errors. BROADCAST

® Vulnerabilities:
® Insecure code;

® Error-prone interface.

ERC-20 functions

transfer (address to, uint256 wvalue) returns (bool success) -

® Send value amount of tokens to address to

balanceOf (address owner) constant returns (uilnt256 balance) -
® number of tokens belonging to address

totalSupply () constant returns (uint256 totalSupply) -
® total number of tokens

approve (address spender, ulnt256 value) returns (bool success)

® approve the spender to withdraw tokens from my account, multiple times;

allowance (address owner, address spender) constant returns
(Uuint256 remaining)

® how much the spender can withdraw

transferFrom(address from, address to, uint256 value)
returns (bool success) - transfer tokens from t

Current Insecurity: Implementations

Exceptions in Solidity

C2 Ca

function F(uint x)
returns uint

X=C1.F(20);

If(x>42) throw;
else return 3}

X =Cz.call(...”F"...)

® (C1.F() can not catch exceptions;
® Ca.call() can not get returned values.

® Exceptions must be for exceptional events!

Exceptions instead of value return

Code example:

function transferFrom(address from, address
success) {
var allowance = allowed[from][msg.sender];

to, uint value) returns (bool

balances[to] = safeAdd(balances[to], value);

balances[from] = safeSub(balances|[from], value); 1
allowed[from] [msg.sender] = safeSub(allowance, value);
Transfer(from, to, value);

return true;

}

function safeSub (uint a, uint b) internal returns (uint) {
assert (b <= a);
return a - b;

Exceptions instead of value return

Code example:

runction transrerkrom(address Irom, address TO, ulnt value)
returns (bool success) {

var allowance = allowed[from] [msg.sender];
balances[to] = safeAdd(balances|[to], value);

balances[from] = safeSub(balances[from], value);
TrTrOWeO ! LLOM o0 . seeL] T Sdrecoupt. arrowance, —varoe) ;
W

return true;

}

® If the _from balance is insufficient, or allowance is too low, exception is
thrown (must return false by the standard).

Relying on future exceptions

[* function transferFrom(address from, address
returns (bool success) {

to, uint value

var allowance = allowed[from] [msg.sender];
— Dalances[to] = safeAdd(balances[to], value);
balances[from] = safeSub(balances[from], value);
L allowed[from] [msg.sender] = safeSub(allowance, value);

Transfer(from, to, value);
return true;

}

® The _to balance is always increased.

® In order to revert the operation, the allowance decrease MUST throw
exception.

Overflows in SafeMath

® function safeMul (uint a, uint b) internal returns

(uint) {
ulnt ¢ = a * b;
assert (a == || ¢ / a == Db);
return c;

}

® Code relies on the (undocumented) behavior of overflow in Solidity.
® First creates overflow, then tries to detect it.

® The overflow might be treated differently in the future, so potential
compatibility loss.

® Same with safeAdd.

Current Insecurity: the Approve() function

Attack on the ERC-20 standard

Approve

approve (address spender, uint256 value)
_spender can withdraw from your account up to _value tokens.

Subsequent approve() overrides the previous one.

transferFrom(address from, address to, uint256 value)
spender withdraws _value tokens from _from and sends them to _to.

transferFrom logs a Transfer event where the spender is not listed(!).

Attack e

1. Alice approves Bob with N tokens;

2. Alice decides to change Bob’s allowance and approves him with M
tokens;

3. Bob notices the last transaction before it is mined and withdraws N
tokens from Alice sending them to Carol.

/. After Alice’s transaction is mined, Bob withdraws M more tokens from
Alice sending them to Carol, thus taking M+N in total.

® Bob’s actions are not properly logged: the Transfer event gives the
addresses of Alice and Carol, not Bob.

® Even more confusion if Carol has allowance from Alice as well.

Our suggestion: atomic approval and new
events

1) function approve(address spender, uint256
currentValue, uint256 value) returns (bool success)

If current allowance for _spender is equal to _currentValue, then overwrite it with
_value and return true, otherwise return false.

2) event Transfer (address indexed spender, address
indexed from, address indexed to, uint256 value)

3) event Approval (address indexed owner, address
indexed spender, uint256 oldValue, uint256 value)

Our approach

Clear requirements and behavior

® Define functional requirements for the token contract and API;
® Describe all use cases;

® State security claims explicitly.

Detailed use cases

2.4 ERC20:TransferFrom

Actors: Spender, Smart Contract

Goal: Spender wants to transfer certain number of tokens from
the owner of cenain source address to the owner of certain
destination address

Main Flow:

1. Spender calls method on Smart Contract providing the
following information as method parameters: number of
tokens to transfer, source address, destination address

2 Transfers are not currently frozen

3 Spenderis currently allowed to transfer requested
number of tokens belonging to the owner of source
address

4. The owner of the source address has enough tokens to
transfer

5. Smart Contract transfers requested number of tokens
from the owner of source address to the source address
to the owner of the destination address

6. Smart Contract reduces number of tokens belonging to
the owner of source address that Spender is allowed to
transfer

7. Some tokens actually did change hands dunng transfer
i.e. number of tokens transferred is more than zero and
destination address is not the same as source address

8. Smart Contract logs token transfer event with the
following information: number of tokens transferred,
source address, destination address

9. Smart Contract returns success indicator to Spender

Exceptional Flow 1:

1. Same as in main flow
2. Transfers are currently frozen
3. Sman Contract returns error indicator to Spender

Exceptional Flow 2:

1. Same as in main flow

2. Same asin main flow

3. Spender is currently not allowed to transfer requested
number of tokens belonging to the owner of source
address

4. Smart Contract returns error indicator to Spender

Exceptional Flow 3:

Same as in main flow

Same as in main flow

Same as in main flow

The owner of the source address does not have enough
tokens to transfer

Smart Contract returns error indicator to Spender

NS S

o

Exceptional Flow 4:

Same as in main flow

Same as in main flow

Same as in main flow

Same as in main flow

Same as in main flow

Same as in main flow

Mo tokens actually did change hands dunng transfer, 1.e
number of tokens transferred is zero or destination
address is not the same as source address

8. Smart Contract returns success indicator to Spender

EIaborate tests

{ name: "Carol tries to transfer 100 Dave’s tokens to himself while Dave does
not have any tokens”,
body: function (test) {
assert {
test.sia
test.carol.address)
test.standardTokenWrapperallowance (test.dave.address,
test.carol.address) == 1000);
assert ['test. Tol ddress) == 0

test. ﬂm@mﬂmm {test. dave address) == 0);
personal.unlockaccount (test.alice, ™)
test.tx = test.carol.execute (
test.standardTokenWrapper.addrass,
test.standardTokenWrappertransferfrom.getData {
test.dave.address, test.dave.address,
{from: test.alice, gas: 10000007});
¥ 1 name: "Make sure transfer failed”,
precondition: function (test) {
miner.start);
return web3.eth.getTransactionReceipt (test.tx); x
body: function (test) {
miner.stop {);
var transferEvents = test.standardlokenWrapper.Transfer (
3 {
fromBlogk: web3.eth.geiTransactionReceipt (test.tx). hlockNumber,
toBlock: web3.eth.geiTransactionReceins (test.tx). plockMunbser
T).get ()
assert (

100}, 0,

nts.length == 0,

miﬂﬂ,em;a length == 0);

var exacBesultEvents = test.carol.Result |
i}
1 framBlock: web3.eth.gefTransactionBeceins (test.tx).hlockNumber,
toBlock: web3.eth.gefTransactionBeceipt (test.tx).blockMumber

value',
ﬁxgsﬂﬁﬁutﬁxﬁuti[ﬂ] args. value}
var [esyltEvents = test.standardTokenWrapper.Result (
i}
1 framBlock: web3.eth.gefTransactionBeceins (test.tx).hlockNumber,
toBlock: web3.eth.getTransactionBeceipk (test.tx).hlockMunmbsr
1.get (};
assert (
Jdength == 17,
m&uﬁﬁm length =

assert [

resiiitbEy

! rents [0].args._value',
IresultEvents [0].args._value);

assert

est.carnl.address)

1000
1000°,

test.standardTokenWrapper.allowance (test.dave.address, test.cargl.address) ==

1000):

assert (

rest.

Full compliance to ERC-20 and predictable

behavior

function transferFrom (address from, address to, uint256 value)
returns (bool success) {
if (allowances [from] [msg.sender] < value) return false;
if (accounts [from] < value) return false;
allowances [from] [msg.sender] =
safeSub (allowances [from] [msg.sender], value);
if (value > 0 && from != to) {
accounts [from] = safeSub (accounts [from], value);
accounts [to] = safeAdd (accounts [to], value);
Transfer (from, to, value);
}
return true;
}

Deployment and Administration:
Dedicated Ul

Ul for smart contract interaction

Smooth user experience is crucial for security

® Runsin browser, Mist is not necessary;

® Connects to local or remote node;

® Accounts and/or passwords synced across devices;

® Plugin support to create administrator consoles.

z)

e 0 @ m

&

Accounts

Tokens

Wallets

Contracts

Deploy contract

Sign message

Settings

ACCOUNTS

R TArd
B Ll B T

@ Primary Test Account :

Sad1UoL

Balance

9,892.80

Secondary Test
Account

Oxc23aac9593aebbf1bac00073

Balance

0.00

a Test wallet :

O AL

Balance

129.92

Example: Smart Token Wallet

Connects to a remote node (Amazon EC2);
Static file, works in any browser/OS locally.

For users:
® Balance and exchange rates for tokens alone and combined;
® Approve and allowance functionality;
For token administrators:
® Fool-proof token resupply;
® Freezing transfers;

® Multisig administration.

TOKENUI

Accounts

Tokens

Wallets

Contracts

Deploy contract

Sign message

Settings

COINS

Name

Ether

TOKENS

Token

Electoral token

Square meter token

UN voting token

Moon Square Mile token

Balance

9,892.80

Balance

528.00

1,000.00

10,000.00

10,000.00

Allowance

0.00

0.00

0.00

0.00

TRANSFER

Approved

30.00

0.00

0.00

0.00

Total

498.00

1,000.00

10,000.00

10,000.00

TRANSFER

TRANSFER

TRANSFER

TRANSFER

MANAGE TOKENS

APPROVE

APFPROVE

APPROVE

APFPROVE

Secure code, smart Ul?

QO

ABDK

www.abdk.consulting

